Neuronal plasticity:
A major contribution of neuroscience to the humanities is the knowledge that the structure of the brain is moulded by the experiences the mind goes through – the phenomenon known as plasticity. It means that the circuits of the brain are sculpted by habitat, schooling, language, relationships, and culture, as well as by the unfolding genetic programme. The action occurs below the micrometre scale – at synapses (the points of connection between neurons) – and involves the exquisite choreography of a number of molecular machines. These molecular processes are so fundamental for cognition that their failure (whether driven by gene mutation or by harsh environments) results in neuropsychological disability. A major locus of plasticity (and hence, cognitive disability) is the dendritic spine.
Principal neurons in the brain, such as cortical pyramidal neurons, express tens of thousands of small protruberances on their dendritic trees. These structures (dendritic spines) receive excitatory information from other neurons, and are highly dynamic. They can adjust their responsiveness to glutamate (the major excitatory neurotransmitter), becoming stronger (potentiation) or weaker (depression), as local circumstances dictate. This strengthening (LTP) or weakening (LTD) can be transient, or persist over long periods and as such, serves as an ideal substrate for learning and memory at synapses and in circuits. Potentiated spines increase in size, and express more AMPA glutamate receptors, whilst the opposite pattern occurs in synaptic depression to the extent that spines can be 'absorbed' back into the dendritic tree.
Over the course of childhood, dendritic spines (excitatory synapses) increase in number, but their numbers are 'pruned' back during adolescence to reach a plateau. Enriched environments have been shown to increase spine density, impoverished environments the opposite. In common psychiatric disorders, spine density is altered. For example, the most robust histological finding in schizophrenia is a reduction of spine density in the frontal cortex, auditory cortex and the hippocampus. In major depression, spines (and dendrites) are lost in the hippocampus. In autism, spine density actually increases. Finally, in Alzheimer's and other dementias there is a catastrophic, and progressive loss of cortical and sub-cortical spines.
Regulation of the spine:
The molecular biology of dendritic spines involves hundreds of proteins, but the outlines are now reasonably well understood. Scaffolding proteins [such as PSD95, shank(s), AKAP, stargazin and homer(s)] provide structural support and provide orientatation for membrane bound receptors, ion-channels and their downstream signalling pathways. The scaffold (post-synaptic density), facilitates effective signalling by ensuring that the correct protein partners are in close apposition. The scaffold is also tethered to proteins which bridge the synaptic cleft (cell adhesion molecules) and to bundles of actin filaments which provide the structure and force for spine enlargement (and retraction).
There is a constant remodelling of the actin cytoskeleton within the spine in response to synaptic and network signalling. Remodelling is via small, cytoplasmic G-proteins from the RHO family. Some family members promote the growth and stabilisation of actin filaments, whereas others promote actin disassembly. Mutations in the proteins which regulate actin dynamics are a cause of learning disability. Finally local protein synthesis (and degradation) occurs within dendritic spines, is tightly controlled and is essential for plasticity. Abnormalities in local protein synthesis within the spine underlie learning disability syndromes such as fragile X, neurofibromatosis and tuberous sclerosis.
Spine pathology:
Recent years have seen glutamate synapses move to centre stage in neuropsychiatry. This is not surprising given the role of pyramidal neurons (glutamate containing neurons) in information processing, and the role of glutamate transmission in learning and memory [see link]. But it is remarkable that so many psychological and cognitive disorders appear to 'coalesce' at dendritic spines.
The enclosed vector-graphic image [click here] highlights a selection of some of the proteins which are now known to be involved in autism, learning disability and schizoprenia.
Research will continue to decipher the complexity (and beauty) of the dendritic spine, but potential treatments are starting to emerge for disorders like fragile X, (which until recently were thought to be not amenable for drug treatment, as was the case for schizophrenia until the 1950s). Molecular neuroscientists will, almost certainly, continue to uncover more treatment targets. The task for psychiatry, as ever, is to keep abreast of neuroscience in all it's complexity (and beauty).